Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror
×
Security

Video When Your Data Absolutely, Positively has to be Destroyed (Video) 295

Video no longer available.
Here's a corporate motto for you: "Destroying data since 1959." Timothy ran into a company called Garner Products (which doesn't use that motto as far as we know), at a security conference. While most exhibitors were busily preserving or encrypting data one way or another, Garner was not only destroying data but delighting in it. And yes, they've really been doing this since 1959; they started out degaussing broadcast cartridges so broadcasters could re-use them without worrying about old cue tones creeping into new recordings. Now, you might ask, "Instead of spending $9,000 or more to render hard drives useless, couldn't you just use a $24 sledge hammer? And have the fun of destroying something physical as a free bonus?" Yes, you could. You'd get healthy exercise as well, and if you only wanted to destroy the data on the hard drives, so what? New drives are cheap these days. But some government agencies and financial institutions require degaussing before the physical destruction (and Garner has machines that do physical destruction, too -- which is how they deal with SSDs). Garner Products President Ron Stofan says in the interview that their destruction process is more certain than shooting a hard drive with a .45. But neither he nor Tim demonstrated a shooting vs. degaussing test for us, so we remain skeptical.

Tim: Ron, first could you introduce yourself, your title and your company.

Ron: Sure. My name is Ron Stofan, I am President of Garner Products Inc. We are manufacturers of degaussing and destruction equipment for hard drives.

Tim: Okay. Now how did you get into the business of destroying data?

Ron: Destroying data started in 1959. My father started the company to erase broadcast cartridges. They erased a few tons of broadcast cartridges. And that started off in the audio industry. Then that transferred up to the video industry, when the video tapes started coming into play up through the video cassettes and then finally into the diskette market. We are erasing all the diskettes for Dysan in the factories so far. And then hard drives came, and people needed a way to destroy data permanently off a hard drive.

Tim: So in a way, you are doing the opposite of what a lot of companies here are doing, which is basically preserving and hiding data.

Ron: Absolutely. Yes. Our main goal is to destroy data to make sure that it is not recoverable in any means either today or into the future.

Tim: Let’s take a look at some of the products that you’ve got that actually go about doing that destruction. Can you walk us through your line a little bit?

Ron: Certainly. This is our entry level degausser. It is our model HD2 degausser. It is a simple operation. You simply place the hard drive into the drawer, close the drawer and the degaussing process automatically starts. It takes about 45 seconds for this to fully erase the hard drive. Right now it executes charging of _____1:33 capacitors, when it is charged it will release all that energy through a coil which the hard drive is sitting in between or inside of, and there is a very strong magnetic field which erases or demagnetizes all of the data patterns on the disk platters inside the hard drive.

Tim: Now unlike the case with audiotape when you destroy the data on the hard drive, you’ve also rendered the drive itself inoperable; is that right?

Ron: That’s correct. So when we erase the data, we are also erasing the server tracks often known as timing tracks on the disk platters themselves. Those are inherent to have the function of the hard drive. So as we erase those magnetic data patterns, that renders the hard drive completely useless. In addition, the amount of field strength going through the hard drive itself is blowing _____2:25 up the read/write heads, it is also demagnetizing the magnets in the motor and the server drive itself.

Tim: Could you say that again? What are the numbers of the surge that is going through that drive?

Ron: On the HD2, it is approximately 9000 gauss or oersteds, these are two similar readings when measured in air. And it is similar to an MRI machine except it is in a small package. And the coil is configured in such a way and shielded in such a way that you can place a floppy disk on top of the degausser and it will not erase the disk. Keeping in mind the coercivity level which is a measurement of how strong the magnetic fields are on the hard disk platter, it is somewhere between 5000. The floppy disks are about 450 to 500 oersted. VHS tape is about 900. So you can see how a metal particle tape is about 1500 to 3000.

Tim: And this box is in a nice strong enclosure, does that mean that if a floppy is not protected that anything outside the field is pretty low shield as well?

Ron: That’s right. Anything I am standing inside, outside the environment everything is shielded, it is very much focused inside. We need all the power to be focused on the internal and this field chassis with some aluminum components inside is very much focused inside.

Tim: And this being your entry level machine, who is it sold to?

Ron: This will go to users that don’t have a high data volume, probably under 100 hard drives a month.

Tim: And in the end does the hard drive itself look any different?

Ron: No.

Tim: How do we know that it has been erased? Just stick it into a machine?

Ron: Yeah. The hard drive is definitely nonfunctional afterwards. It looks physically unchanged. So this hard drive has been erased probably about 50 or 60 times; internally though under a magnetic microscope you can actually see the data patterns on that. It could be imaged. And there would not be any data patterns. You can actually get a magnetic film or disk or liquid that could actually expose those domains.

Tim: Can we take a look up the product line there? Your bigger devices there.

Ron: Certainly. Here we go. So here we have our model HD3. This is our high production degausser. This has about 9500 to 10,000 gauss or about 1 tesla and it is our high production degausser. It is simple operation. Simply drop the hard drive into the slot that initiates the capacitor and degaussing cycle to start. It is going to take about 9 seconds to just erase the hard drive. It is now verifying that the magnetic field was sufficient to erase that information, and when it does, it drops out the back. So on all of our products, each and every erase is verified after each magnetic field has gone off.

Tim: And again what does this machine cost? And who would buy it?

Ron: This machine here is $8975. It is purchased by banks, hospitals, government institutions, states, and as you can imagine the uses of hard drives is pretty much unlimited.

Tim: So that is for higher volume?

Ron: Higher volume. Data centersand that sort of thing.

Tim: Alright. And what’s next?

Ron: I’m sorry.

Tim: And what’s next?

Ron: Next we have our TS1 degausser. This has been evaluated, this is on the NSA evaluated products list. What that means is it has been tested and has passed the stringent tests for the National Security Agency to erase top secret data. So this would be more missile codes, any of the top secret data that the government would have. Many banks, institutions, and corporations also follow the guidelines that the NSA and DOD do follow because they do have information from these facilities, and so some require this type of degausser. Again this degausser is like the HD2 in that it is a drawer operation, simply place it in, close the door, and hit the erase button.

Tim: Now it is still really sending a huge flux through the data platform. What else does this do differently that would satisfy the NSA that it is actually more secure?

Ron: This has about twice the amount of field or 20000 gauss compared to the 8000 or 9000 gauss that the HD2 has. And what this does is the government required a larger margin of error. So they are looking at different items or consequences such as manufacturing differences in the hard drive, manufacturing differences in the degausser itself, power fluctuations, temperature fluctuations, and so they take all those variables into account and they come up with their guidelines or the numbers that they need and hence you need a bigger unit and stronger.

Tim: And they must be willing to pay a higher price too?

Ron: Absolutely.

Tim: What does this run?

Ron: This is $19975.

Tim: And I imagine it comes with some kind of a vehicle to move it?

Ron: No. It doesn’t come with a vehicle to move it. So we do have it comes in a carrying case, so these are transportable cases here on the sides, so that’s actually one of the cases that these will travel in. So you could take this from place to place. In addition, we have side handles that slip out for easy maneuverability. So there are two handles on each side that slide out.

Tim: So right now, lot of data is moving to solid state, I know you’ve got a machine that can work with that as well, can you demonstrate that?

Ron: Certainly. So this is our new model PD5. It is a hard drive and solid state destruction device. So first of all, I will demonstrate the destruction of hard drives. Let me grab two hard drives here. So it is really to do two hard drives at a time, it takes about 20 seconds to destroy two hard drives. Simply place them in, close the door, and hit the destroy button. That is putting over 20,000 lbs. of force through it to break the hard drives.

Tim: So you can’t just send that to one of the data recovery companies that is listed on the back of PC World?

Ron: No. No. And for some companies, this is sufficient for destruction. Other companies, this is a secondary operation after degaussing since degaussing actually gets rid of the information, destruction simply breaks it and makes it nonfunctional. And then for solid state devices, what we have is we have our new SSD destroyer which is an attachment that goes in, or an accessory that goes in to the PD5. So you simply slide that in, basically it is like a bed and ceiling of nails, it will go in and it will penetrate through the solid state device, through the PC boards and it erases and destroys all of the platters on it, here is a simulated solid state drive, and you simply place that in between the chambers, close the door, and no more data. And what is important these days is there are some hybrid drives as well so there are some magnetic drives, something that has a still rotational media that needs a degaussing, and then there is a portion on the board that actually still has memory and stores data even when it is apart. So this is the end result.

Tim: Can you turn that around a little bit in your hands?

Ron: Here we go.

Tim: Now it is pretty thorough.

Ron: It is completely thorough and we have had it tested by data recovery companies and also looked at by government agencies and they have all agreed that once the package the chips are pierced in this pattern and that closed tolerance that it is completely unrecoverable.

Tim: And what else have people done to destroy drives? I mean there are machines that you are selling. What are the alternatives if you want to get rid of data permanently?

Ron: The beautiful thing about this is it is a simple process anybody can use. We have people come in to our shows, so we do government shows, we do industry business shows like this, and some people come and say, oh we hit it with a hammer, they drill holes in it, or they shoot it with their gun. We had a customer at this show, came in with his laptop, showed us a picture of his hard drive that he shot with his 45 and he was surprised to see that the 45 didn’t go all the way through the hard drive; it was actually stuck in the data platters. We had one lady at a show in Washington, DC, who came to the show on a Tuesday, and she asked if she could bring her hard drive from home the following day; we said sure. So we put in, we degaussed it, on a TS1 then we put it into our PD5 and the next thing we knew there was water coming out of the bottom of our product. And she said oh don’t worry about that. We were all wondering where this water is coming from. And her security was to put her hard drive in the sink, fill the hard drive up with water, and then stick it in the freezer. So she had just recently taken it out of the freezer; by the time she got here, and we cracked it open and all the water came out. So people would do many different things to protect their data.

Tim: Anything else I should be talking about with you about it?

Ron: I think that should do it. Just make sure you don’t send your hard drives back when they break; these work on as opposed to overwriting which is not approved by the National Security Agency for top secret data. So just make sure you protect your data.

This discussion has been archived. No new comments can be posted.

When Your Data Absolutely, Positively has to be Destroyed (Video)

Comments Filter:
  • dd (Score:4, Informative)

    by Anonymous Coward on Thursday March 28, 2013 @02:33PM (#43305213)

    dd if=/dev/zero of=/dev/sda bs=1024 &

  • Re:dd (Score:4, Informative)

    by SpectreBlofeld ( 886224 ) on Thursday March 28, 2013 @02:42PM (#43305309)

    I encourage anyone who has 20 minutes to spare to watch this short Frontline documentary on E-waste:

    http://www.pbs.org/frontlineworld/stories/ghana804/video/video_index.html [pbs.org]

    I bet lots of companies throwing out old hardware who are worried about data leakage could actually find use for their old drives in-house. Hell, just keep them in a closet somewhere until one of your in-use drives go bad (and they will).

  • COAL (Score:4, Informative)

    by Charliemopps ( 1157495 ) on Thursday March 28, 2013 @03:00PM (#43305557)

    Coal is about $80/ton. Take about 1lb of that, light it, set a bunch of hard drives in the middle of it, put a house fan next to it... hard drives are a puddle of molten steel/plastic in about 10min and it cost you pennies. You can do the same with propane, but you'll need to build a burner and such.

    And before anyone gets on their high horse about burning coal, keep in mind the little device they're using her was most likely powered by coal generated electricity.

  • Re:dd (Score:4, Informative)

    by omnichad ( 1198475 ) on Thursday March 28, 2013 @03:37PM (#43305955) Homepage

    With the platter density, a 5400 RPM 500GB single platter drive gets much better throughput.

  • Re:dd (Score:4, Informative)

    by dave562 ( 969951 ) on Thursday March 28, 2013 @03:45PM (#43306043) Journal

    A format is not the same as an overwrite. Even a low level format is not the same as zeroing.

  • Re:dd (Score:5, Informative)

    by Insightfill ( 554828 ) on Thursday March 28, 2013 @05:03PM (#43306737) Homepage

    As a bonus, a really enterprising sysadmin will use the (aggregate) empty desktop disk space as a de-centralized near-term backup solution. Mind you, it should never replace tapes, snapshots, etc, but...

    If you can park encrypted copies of critical data around redundantly on every desktop, deny the use of that space to the desktop user, and do it in a way that's automated? Sweet.

    Many years ago, a company named "Mangosoft" had a product named "Medley" [mangosoft.com] which would do this.. Each user would allocate a certain amount of their disk drive to the "Medley" drive, and all of the users (up to 25 max) would share a really big drive together. Earlier versions of this technology worked by basically keeping two copies of every file, and moving a copy to the local drive of the last user who accessed it. If a machine holding a file went down (power, etc.) then the list of files it held would be pushed around from other working machines to always ensure duplicates are still around.

    Current versions of this would probably be GlusterFS, Coda and Tahoe.

Beware of Programmers who carry screwdrivers. -- Leonard Brandwein

Working...