For the out-of-band Slashdot experience (mostly headlines), follow us on Twitter, or Facebook. ×
AI

Baidu Forced To Withdraw Last Month's ImageNet Test Results 94 94

elwinc writes: Back in mid-May, Baidu, a computer research and services organization in Mainland China, announced impressive results on the ImageNet "Large Scale Visual Recognition Challenge," besting results posted by Google and Microsoft. Turns out, Baidu gamed the system, creating 30 accounts and running far more than the 2 tests per week allowed in the contest. Having been caught cheating, Baidu has been banned for a year from the challenge. I believe all competitors are using variations on the convolutional neural network, AKA deep network. Running the test dozens of times per week might allow a competitor to pre-tune parameters for the particular problem, thus producing results that might not generalize to other problems. All of which makes it quite ironic that a Baidu scientist crowed "Our company is now leading the race in computer intelligence!"
AI

Baidu's Supercomputer Beats Google At Image Recognition 115 115

catchblue22 writes: Using the ImageNet object classification benchmark, Baidu’s Minwa supercomputer scanned more than 1 million images and taught itself to sort them into about 1,000 categories and achieved an image identification error rate of just 4.58 percent, beating humans, Microsoft and Google. Google's system scored a 95.2% and Microsoft's, a 95.06%, Baidu said. “Our company is now leading the race in computer intelligence,” said Ren Wu, a Baidu scientist working on the project. “I think this is the fastest supercomputer dedicated to deep learning,” he said. “We have great power in our hands—much greater than our competitors.”
Supercomputing

Nuclear Fusion Simulator Among Software Picked For US's Summit Supercomputer 57 57

An anonymous reader writes Today, The Register has learned of 13 science projects approved by boffins at the US Department of Energy to run on the 300-petaFLOPS Summit. These software packages, selected for the Center for Accelerated Application Readiness (CAAR) program, will be ported to the massive parallel machine, and are hoped to make full use of the supercomputer's architecture.They range from astrophysics, biophysics, chemistry, and climate modeling to combustion engineering, materials science, nuclear physics, plasma physics and seismology.
Intel

US Blocks Intel From Selling Xeon Chips To Chinese Supercomputer Projects 229 229

itwbennett writes: U.S. government agencies have stopped Intel from selling microprocessors for China's supercomputers, apparently reflecting concern about their use in nuclear tests. In February, four supercomputing institutions in China were placed on a U.S. government list that effectively bans them from receiving certain U.S. exports. The institutions were involved in building Tianhe-2 and Tianhe-1A, both of which have allegedly been used for 'nuclear explosive activities,' according to a notice (PDF) posted by the U.S. Department of Commerce. Intel has been selling its Xeon chips to Chinese supercomputers for years, so the ban represents a blow to its business.
Intel

US Pens $200 Million Deal For Massive Nuclear Security-Focused Supercomputer 74 74

An anonymous reader writes For the first time in over twenty years of supercomputing history, a chipmaker [Intel] has been awarded the contract to build a leading-edge national computing resource. This machine, expected to reach a peak performance of 180 petaflops, will provide massive compute power to Argonne National Laboratory, which will receive the HPC gear in 2018. Supercomputer maker Cray, which itself has had a remarkable couple of years contract-wise in government and commercial spheres, will be the integrator and manufacturer of the "Aurora" super. This machine will be a next-generation variant of its "Shasta" supercomputer line. The new $200 million supercomputer is set to be installed at Argonne's Leadership Computing Facility in 2018, rounding out a trio of systems aimed at bolstering nuclear security initiatives as well as pushing the performance of key technical computing applications valued by the Department of Energy and other agencies.
Android

NVIDIA Announces SHIELD Game Console 116 116

MojoKid writes: NVIDIA held an event in San Francisco last night at GDC, where the company unveiled a new Android TV streamer, game console, and supercomputer, as NVIDIA's Jen Hsun Huang calls it, all wrapped up in a single, ultra-slim device called NVIDIA SHIELD. The SHIELD console is powered by the NVIDIA Tegra X1 SoC with 3GB of RAM, 16GB of storage, Gig-E and 802.11ac 2x2 MIMO WiFi. It's also 4K Ultra-HD Ready with 4K playback and capture up to 60 fps (VP9, H265, H264) with encode/decode with full hardware processing. The company claims the console provides twice the performance of an Xbox 360. NVIDIA demo'ed the device with Android TV, streaming music and HD movies and browsing social media. The device can stream games from a GeForce powered PC to your television or from NVIDIA's GRID cloud gaming service, just like previous NVIDIA SHIELD devices. Native Android games will also run on the SHIELD console. NVIDIA's plan is to offer a wide array of native Android titles in the SHIELD store, as well as leverage the company's relationships with game developers to bring top titles to GRID. The device was shown playing Gearbox's Borderlands The Pre-Sequel, Doom 3 BFG Edition, Metal Gear Solid V, the Unreal Engine 4 Infiltrator demo and yes, even Crysis 3.
Supercomputing

NSF Commits $16M To Build Cloud-Based and Data-Intensive Supercomputers 29 29

aarondubrow writes: As supercomputing becomes central to the work and progress of researchers in all fields, new kinds of computing resources and more inclusive modes of interaction are required. The National Science Foundation announced $16M in awards to support two new supercomputing acquisitions for the open science community. The systems — "Bridges" at the Pittsburgh Supercomputing Center and "Jetstream," co-located at the Indiana University Pervasive Technology Institute and The University of Texas at Austin's Texas Advanced Computing Center — respond to the needs of the scientific computing community for more high-end, large-scale computing resources while helping to create a more inclusive computing environment for science and engineering. Reader 1sockchuck adds this article about why funding for the development of supercomputers is more important than ever: America's high-performance computing (HPC) community faces funding challenges and growing competition from China and other countries. At last week's SC14 conference, leading researchers focused on outlining the societal benefits of their work, and how it touches the daily lives of Americans. "When we talk at these conferences, we tend to talk to ourselves," said Wilf Pinfold, director of research and advanced technology development at Intel Federal. "We don't do a good job communicating the importance of what we do to a broader community." Why the focus on messaging? Funding for American supercomputing has been driven by the U.S. government, which is in a transition with implications for HPC funding. As ComputerWorld notes, climate change skeptic Ted Cruz is rumored to be in line to chair a Senate committee that oversees NASA and the NSF.
AI

Alva Noe: Don't Worry About the Singularity, We Can't Even Copy an Amoeba 455 455

An anonymous reader writes "Writer and professor of philosophy at the University of California, Berkeley Alva Noe isn't worried that we will soon be under the rule of shiny metal overlords. He says that currently we can't produce "machines that exhibit the agency and awareness of an amoeba." He writes at NPR: "One reason I'm not worried about the possibility that we will soon make machines that are smarter than us, is that we haven't managed to make machines until now that are smart at all. Artificial intelligence isn't synthetic intelligence: It's pseudo-intelligence. This really ought to be obvious. Clocks may keep time, but they don't know what time it is. And strictly speaking, it is we who use them to tell time. But the same is true of Watson, the IBM supercomputer that supposedly played Jeopardy! and dominated the human competition. Watson answered no questions. It participated in no competition. It didn't do anything. All the doing was on our side. We played Jeopordy! with Watson. We used 'it' the way we use clocks.""
Supercomputing

Does Being First Still Matter In America? 247 247

dcblogs writes At the supercomputing conference, SC14, this week, a U.S. Dept. of Energy offical said the government has set a goal of 2023 as its delivery date for an exascale system. It may be taking a risky path with that amount of lead time because of increasing international competition. There was a time when the U.S. didn't settle for second place. President John F. Kennedy delivered his famous "we choose to go to the moon" speech in 1962, and seven years later a man walked on the moon. The U.S. exascale goal is nine years away. China, Europe and Japan all have major exascale efforts, and the government has already dropped on supercomputing. The European forecast of Hurricane Sandy in 2012 was so far ahead of U.S. models in predicting the storm's path that the National Oceanic and Atmospheric Administration was called before Congress to explain how it happened. It was told by a U.S. official that NOAA wasn't keeping up in computational capability. It's still not keeping up. Cliff Mass, a professor of meteorology at the University of Washington, wrote on his blog last month that the U.S. is "rapidly falling behind leading weather prediction centers around the world" because it has yet to catch up in computational capability to Europe. That criticism followed the $128 million recent purchase a Cray supercomputer by the U.K.'s Met Office, its meteorological agency.
Supercomputing

US DOE Sets Sights On 300 Petaflop Supercomputer 127 127

dcblogs writes U.S. officials Friday announced plans to spend $325 million on two new supercomputers, one of which may eventually be built to support speeds of up to 300 petaflops. The U.S. Department of Energy, the major funder of supercomputers used for scientific research, wants to have the two systems – each with a base speed of 150 petaflops – possibly running by 2017. Going beyond the base speed to reach 300 petaflops will take additional government approvals. If the world stands still, the U.S. may conceivably regain the lead in supercomputing speed from China with these new systems. How adequate this planned investment will look three years from now is a question. Lawmakers weren't reading from the same script as U.S. Energy Secretary Ernest Moniz when it came to assessing the U.S.'s place in the supercomputing world. Moniz said the awards "will ensure the United States retains global leadership in supercomputing." But Rep. Chuck Fleischmann (R-Tenn.) put U.S. leadership in the past tense. "Supercomputing is one of those things that we can step up and lead the world again," he said.
Earth

Interviews: Ask CMI Director Alex King About Rare Earth Mineral Supplies 62 62

The modern electronics industry relies on inputs and supply chains, both material and technological, and none of them are easy to bypass. These include, besides expertise and manufacturing facilities, the actual materials that go into electronic components. Some of them are as common as silicon; rare earth minerals, not so much. One story linked from Slashdot a few years back predicted that then-known supplies would be exhausted by 2017, though such predictions of scarcity are notoriously hard to get right, as people (and prices) adjust to changes in supply. There's no denying that there's been a crunch on rare earths, though, over the last several years. The minerals themselves aren't necessarily rare in an absolute sense, but they're expensive to extract. The most economically viable deposits are found in China, and rising prices for them as exports to the U.S., the EU, and Japan have raised political hackles. At the same time, those rising prices have spurred exploration and reexamination of known deposits off the coast of Japan, in the midwestern U.S., and elsewhere.

Alex King is director of the Critical Materials Institute, a part of the U.S. Department of Energy's Ames Laboratory. CMI is heavily involved in making rare earth minerals slightly less rare by means of supercomputer analysis; researchers there are approaching the ongoing crunch by looking both for substitute materials for things like gallium, indium, and tantalum, and easier ways of separating out the individual rare earths (a difficult process). One team there is working with "ligands – molecules that attach with a specific rare-earth – that allow metallurgists to extract elements with minimal contamination from surrounding minerals" to simplify the extraction process. We'll be talking with King soon; what questions would you like to see posed? (This 18-minute TED talk from King is worth watching first, as is this Q&A.)
Supercomputing

16-Teraflops, £97m Cray To Replace IBM At UK Meteorological Office 125 125

Memetic writes: The UK weather forecasting service is replacing its IBM supercomputer with a Cray XC40 containing 17 petabytes of storage and capable of 16 TeraFLOPS. This is Cray's biggest contract outside the U.S. With 480,000 CPUs, it should be 13 times faster than the current system. It will weigh 140 tons. The aim is to enable more accurate modeling of the unstable UK climate, with UK-wide forecasts at a resolution of 1.5km run hourly, rather than every three hours, as currently happens. (Here's a similar system from the U.S.)
Supercomputing

Supercomputing Upgrade Produces High-Resolution Storm Forecasts 77 77

dcblogs writes A supercomputer upgrade is paying off for the U.S. National Weather Service, with new high-resolution models that will offer better insight into severe weather. This improvement in modeling detail is a result of a supercomputer upgrade. The National Oceanic and Atmospheric Administration, which runs the weather service, put into production two new IBM supercomputers, each 213 teraflops, running Linux on Intel processors. These systems replaced 74-teraflop, four-year old systems. More computing power means systems can run more mathematics, and increase the resolution or detail on the maps from 8 miles to 2 miles.
Cloud

IBM Opens Up Its Watson Supercomputer To Researchers 28 28

An anonymous reader writes IBM has announced the "Watson Discovery Advisor" a cloud-based tool that will let researchers comb through massive troves of data, looking for insights and connections. The company says it's a major expansion in capabilities for the Watson Group, which IBM seeded with a $1 billion investment. "Scientific discovery takes us to a different level as a learning system," said Steve Gold, vice president of the Watson Group. "Watson can provide insights into the information independent of the question. The ability to connect the dots opens up a new world of possibilities."
Supercomputing

How a Supercomputer Beat the Scrap Heap and Lived On To Retire In Africa 145 145

New submitter jorge_salazar (3562633) writes Pieces of the decommissioned Ranger supercomputer, 40 racks in all, were shipped to researchers in South Africa, Tanzania, and Botswana to help seed their supercomputing aspirations. They say they'll need supercomputers to solve their growing science problems in astronomy, bioinformatics, climate modeling and more. Ranger's own beginnings were described by the co-founder of Sun Microsystems as a 'historic moment in petaflop computing."
Programming

545-Person Programming War Declares a Winner 57 57

An anonymous reader writes: A while back we discussed Code Combat, a multiplayer game that lets players program their way to victory. They recently launched a tournament called Greed, where coders had to write algorithms for competitively collecting coins. 545 programmers participated, submitting over 126,000 lines of code, which resulted in 390 billion statements being executed on a 673-core supercomputer. The winner, going by the name of "Wizard Dude," won 363 matches, tied 14, and lost none! He explains his strategy: "My coin-collecting algorithm uses a novel forces-based mechanism to control movement. Each coin on the map applies an attractive force on collectors (peasants/peons) proportional to its value over distance squared. Allied collectors and the arena edges apply a repulsive force, pushing other collectors away. The sum of these forces produces a vector indicating the direction in which the collector should move this turn. The result is that: 1) collectors naturally move towards clusters of coins that give the greatest overall payoff, 2) collectors spread out evenly to cover territory. Additionally, the value of each coin is scaled depending on its distance from the nearest enemy collector, weighting in favor of coins with an almost even distance. This encourages collectors not to chase lost coins, but to deprive the enemy of contested coins first and leave safer coins for later."
Science

Making Graphene Work For Real-World Devices 18 18

aarondubrow writes: "Graphene, a one-atom-thick form of the carbon material graphite, is strong, light, nearly transparent and an excellent conductor of electricity and heat, but a number of practical challenges must be overcome before it can emerge as a replacement for silicon in electronics or energy devices. One particular challenge concerns the question of how graphene diffuses heat, in the form of phonons. Thermal conductivity is critical in electronics, especially as components shrink to the nanoscale. Using the Stampede supercomputer at the Texas Advanced Computing Center, Professor Li Shi simulated how phonons (heat-carrying vibrations in solids) scatter as a function of the thickness of the graphene layers. He also investigated how graphene interacts with substrate materials and how phonon scattering can be controlled. The results were published in the Proceedings of the National Academy of Sciences, Applied Physical Letters and Energy and Environmental Science."
Intel

Intel and SGI Test Full-Immersion Cooling For Servers 102 102

itwbennett (1594911) writes "Intel and SGI have built a proof-of-concept supercomputer that's kept cool using a fluid developed by 3M called Novec that is already used in fire suppression systems. The technology, which could replace fans and eliminate the need to use tons of municipal water to cool data centers, has the potential to slash data-center energy bills by more than 90 percent, said Michael Patterson, senior power and thermal architect at Intel. But there are several challenges, including the need to design new motherboards and servers."
Supercomputing

Pentago Is a First-Player Win 136 136

First time accepted submitter jwpeterson writes "Like chess and go, pentago is a two player, deterministic, perfect knowledge, zero sum game: there is no random or hidden state, and the goal of the two players is to make the other player lose (or at least tie). Unlike chess and go, pentago is small enough for a computer to play perfectly: with symmetries removed, there are a mere 3,009,081,623,421,558 (3e15) possible positions. Thus, with the help of several hours on 98304 threads of Edison, a Cray supercomputer at NERSC, pentago is now strongly solved. 'Strongly' means that perfect play is efficiently computable for any position. For example, the first player wins."